Implementasi Deteksi Jenis Tanaman Herbal Dengan Model Klasifikasi Gambar Menggunakan Teachable Machine
Abstract
Herbal plants are a source of natural ingredients widely used in traditional medicine and alternative therapies. However, the process of identifying herbal plant types is still often done manually, potentially leading to errors, especially for the general public. The aim of this research is to implement an intelligent system capable of classifying herbal plant types based on leaf images, thereby helping to identify herbal plants independently while providing educational value. The research utilizes an image dataset of several types of herbal plant leaves that were processed and trained using Google Teachable Machine. This platform facilitates training machine learning models through an image-based approach without requiring complex programming knowledge. The dataset is divided into several classes according to the type of herbal plant, and the training process is carried out by varying parameters such as epoch, batch size, and learning rate to obtain the most optimal configuration. The results of this research create a web-based intelligent system application that can effectively classify herbal plant images, provide educational information to users, and can be further developed into a practical tool for herbal plant identification. The research also highlights several challenges, such as the need for a sufficiently large and diverse dataset, variations in lighting conditions and image backgrounds, and the model's ability to perform consistently under real-world conditions.
References
Alhussainan, N. F., Ben Youssef, B., & Ben Ismail, M. M. (2024). A Deep Learning Approach for Brain Tumor Firmness Detection Based on Five Different YOLO Versions: YOLOv3–YOLOv7. Computation, 12(3), 44. doi:10.3390/computation12030044
Ankalaki, S., G Biradar, V., Naik P, K. K., & S. Hukkeri, G. (2024). A Deep Learning Approach for Malnutrition Detection. International Journal of Online and Biomedical Engineering (IJOE), 20(06), 116–138. doi:10.3991/ijoe.v20i06.46919
Carney, M., Webster, B., Alvarado, I., Phillips, K., Howell, N., Griffith, J., … Chen, A. (2020). Teachable Machine: Approachable Web-Based Tool for Exploring Machine Learning Classification. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–8). New York, NY, USA: ACM. doi:10.1145/3334480.3382839
DeCastro-García, N., Muñoz Castañeda, Á. L., Escudero García, D., & Carriegos, M. V. (2019). Effect of the Sampling of a Dataset in the Hyperparameter Optimization Phase over the Efficiency of a Machine Learning Algorithm. Complexity, 2019(1). doi:10.1155/2019/6278908
Fatimah Khalid, & Amirul Azuani Romle. (2023). Herbal Plant Image Classification using Transfer Learning and Fine-Tuning Deep Learning Model. Journal of Advanced Research in Applied Sciences and Engineering Technology, 35(1), 16–25. doi:10.37934/araset.34.3.1625
Ferrag, M. A., Maglaras, L., Janicke, H., & Smith, R. (2019). Deep Learning Techniques for Cyber Security Intrusion Detection : A Detailed Analysis. doi:10.14236/ewic/icscsr19.16
Hu, Y., Xu, L., Huang, P., Luo, X., Wang, P., & Kang, Z. (2021). Reliable Identification of Oolong Tea Species: Nondestructive Testing Classification Based on Fluorescence Hyperspectral Technology and Machine Learning. Agriculture, 11(11), 1106. doi:10.3390/agriculture11111106
Hussein, B. M., & Shareef, S. M. (2024). An Empirical Study on the Correlation between Early Stopping Patience and Epochs in Deep Learning. ITM Web of Conferences, 64, 01003. doi:10.1051/itmconf/20246401003
Kmail, A. (2024). Mitigating digestive disorders: Action mechanisms of Mediterranean herbal active compounds. Open Life Sciences, 19(1). doi:10.1515/biol-2022-0857
Ladds, M. A., Thompson, A. P., Kadar, J.-P., J Slip, D., P Hocking, D., & G Harcourt, R. (2017). Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry. Animal Biotelemetry, 5(1), 8. doi:10.1186/s40317-017-0123-1
Li, J., & Yang, X. (2020). A Cyclical Learning Rate Method in Deep Learning Training. In 2020 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). IEEE. doi:10.1109/CITS49457.2020.9232482
Lin, N., Chen, Y., Liu, H., & Liu, H. (2021). A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity. Minerals, 11(2), 159. doi:10.3390/min11020159
Manoharan J, S. (2021). Flawless Detection of Herbal Plant Leaf by Machine Learning Classifier Through Two Stage Authentication Procedure. Journal of Artificial Intelligence and Capsule Networks, 3(2), 125–139. doi:10.36548/jaicn.2021.2.005
Naeem, S., Ali, A., Chesneau, C., Tahir, M. H., Jamal, F., Sherwani, R. A. K., & Ul Hassan, M. (2021). The Classification of Medicinal Plant Leaves Based on Multispectral and Texture Feature Using Machine Learning Approach. Agronomy, 11(2), 263. doi:10.3390/agronomy11020263
Osawa, K., Tsuji, Y., Ueno, Y., Naruse, A., Foo, C.-S., & Yokota, R. (2022). Scalable and Practical Natural Gradient for Large-Scale Deep Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 404–415. doi:10.1109/TPAMI.2020.3004354
Ottoni, A. L. C., de Amorim, R. M., Novo, M. S., & Costa, D. B. (2023). Tuning of data augmentation hyperparameters in deep learning to building construction image classification with small datasets. International Journal of Machine Learning and Cybernetics, 14(1), 171–186. doi:10.1007/s13042-022-01555-1
Patil, K., Suryawanshi, Y., Dhoka, A., & Chumchu, P. (2024). Plumbago Zeylanica (Chitrak) leaf image dataset: A comprehensive collection for botanical studies, herbal medicine research, and environmental analyses. Data in Brief, 52, 109929. doi:10.1016/j.dib.2023.109929
Pratondo, A., Elfahmi, E., & Novianty, A. (2022). Classification of Curcuma longa and Curcuma zanthorrhiza using transfer learning. PeerJ Computer Science, 8, e1168. doi:10.7717/peerj-cs.1168
Renas Rajab Asaad, & M. Abdulazeez, A. (2024). Comprehensive Classification of Iris Flower Species: A Machine Learning Approach. Indonesian Journal of Computer Science, 13(1). doi:10.33022/ijcs.v13i1.3717
Roopashree, S., & Anitha, J. (2021). DeepHerb: A Vision Based System for Medicinal Plants Using Xception Features. IEEE Access, 9, 135927–135941. doi:10.1109/ACCESS.2021.3116207
Sucher, N., & Carles, M. (2008). Genome-Based Approaches to the Authentication of Medicinal Plants. Planta Medica, 74(6), 603–623. doi:10.1055/s-2008-1074517
Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J., Martínez, A., & Jenkins, M. (2020). Evaluating hyper-parameter tuning using random search in support vector machines for software effort estimation. In Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics in Software Engineering (pp. 31–40). New York, NY, USA: ACM. doi:10.1145/3416508.3417121

This work is licensed under a Creative Commons Attribution 4.0 International License.









